53 research outputs found

    Development of seeding techniques for small supersonic wind tunnel

    Get PDF
    The NASA Lewis 1x1 foot supersonic wind tunnel is used to experimentally verify computational methods. This tunnel, which is continuous running, operates from laboratory-wide high pressure air and vacuum systems. As such, the air does not recirculate but makes a single pass through the tunnel. The Mach number is varied with interchangeable nozzle blocks and has a range from Mach 1.6 to 4.0. Dry and filtered air is available up to pressures of 3 atmospheres. The air enters the tunnel system through a plenum having flow straighteners and 6 fine mesh screens. The exit of the plenum provides smooth contraction with an area ratio of approximately 20 that, along with the screens, provides a uniform flow for the nozzle

    Progress toward synergistic hypermixing nozzles

    Get PDF
    Mean flow measurements were obtained for air-to-air mixing downstream of swept and unswept ramp wall mounted hypermixing nozzle configurations. Aside from the sweep of the ramps, the two nozzle configurations studied are identical. The nozzles inject three parallel supersonic jets at a 15 deg angle (relative to the wind tunnel wall) into a supersonic freestream. Mach number and volume fraction distributions in a transverse plane 11.1 nozzle heights downstream from the nozzle exit plane were measured. Data are presented for a freestream Mach number of three at a matched static pressure condition and also at underexpanded static pressure condition (pressure ratio = 5). Surface oil flow visualization was used to study the near wall flow behavior. The results indicate that the swept ramp injectors produce stronger and larger vortex pairs than the unswept ramp injectors. The increased interaction between the swept ramp model's larger vortex pairs yields better mixing characteristics for this model

    Boundary layer analysis of a Centaur standard shroud

    Get PDF
    An analytical boundary layer investigation was carried out in conjunction with an experimental wind tunnel test to determine the discharge characteristics of the Centaur shroud ascent vent system on the Titan/Centaur launch vehicle. This involved estimating the effect of the local boundary layers on the vent discharge for vehicle Mach numbers ranging from 0.8 to 1.56. The growth of the boundary layer along the vehicle was influenced by the interaction with flanges protruding into the flow and by the longitudinal corrugations in the vehicle surface. The effects of the flange and corrugations were treated by approximate techniques. In addition, boundary layer calculations were made for a 3 percent model of the launch vehicle compared with experimental results

    Surface and flow field measurements in a symmetric crossing shock wave/turbulent boundary-layer interaction

    Get PDF
    Results of an experimental investigation of a symmetric crossing shock/turbulent boundary layer interaction are presented for a Mach number of 3.44 and deflection angles of 2, 6, 8, and 9 degrees. The interaction strengths vary from weak to strong enough to cause a large region of separated flow. Measured quantities include surface static pressure (both steady and unsteady) and flowfield Pitot pressures. Pitot profiles in the plane of symmetry through the interaction region are shown for various deflection angles. Oil flow visualization and the results of a trace gas streamline tracking technique are also presented

    Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    Get PDF
    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate

    Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Get PDF
    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows

    A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    Get PDF
    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields

    An experimental comparison of nonswirling and swirling flow in a circular-to-rectangular transition duct

    Get PDF
    Circular-to-rectangular transition ducts are used as exhaust system components of aircraft with rectangular exhaust nozzles. Often, the incoming flow of these transition ducts includes a swirling velocity component remaining from the gas turbine engine. Previous transition duct studies have either not included inlet swirl or when inlet swirl was considered, only overall performance parameters were evaluated. Circular-to-rectangular transition duct flows with and without inlet swirl were explored in order to understand the effect of inlet swirl on the transition duct flow field and to provide detailed duct flow data for comparison with numerical code predictions. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Coefficients based on velocities and total and static pressures measured incross stream planes at four axial locations within the transition duct, along with surface static pressure measurements and surface oil film visualization, are presented for both nonswirling and swirling incoming flow. In both cases the inlet centerline Mach number was 0.35. The Reynolds number based on the inlet centerline velocity and duct inlet diameter was 1,547,000 for nonswirling and 1,366,000 for swirling flow. The maximum swirl angle was 15.6 deg. Two pair of counter-rotating side wall vortices appeared in the duct flow without inlet swirl. These vortices were absent in the swirling incoming flow cases

    An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    Get PDF
    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion

    Flow visualization of shock-boundary layer interaction

    Get PDF
    Two and three-dimensional shock-boundary layer interaction data were obtained from supersonic wind tunnel tests. These interactions are studied both with and without boundary layer bleed. The data verify computational fluid dynamic codes. Surface static pressure, pitot pressure, flow angularity, and bleed rates, are studied by flow visualization techniques. Surface oil flow using fluorescent dye and laser sheet using water droplets as the scattering material are used for flow visualization
    corecore